

InterviewSolution
Saved Bookmarks
1. |
In any ΔABC, prove that (c2 – a2 + b2) tan A = (a2 – b2 + c2) tan B = (b2 – c2 + a2) tan C |
Answer» To prove (c2 – a2 + b2) tan A = (a2 – b2 + c2) tan B = (b2 – c2 + a2) tan C We know tan A = \(\frac{abc}R\)\(\frac{1}{b^2+c^2-a^2}\).......(a) Similarity, tan B = \(\frac{abc}R\)\(\frac{1}{b^2+c^2-a^2}\) and tanC = \(\frac{abc}R\)\(\frac{1}{b^2+c^2-a^2}\) Therefore, (c2 - a2 + b2) tanA = (a2 - b2 + c2) tanB = (b2 - c2 +a2) tanc = \(\frac{abc}R\) Hence we can conclude comparing above equations. (c2 – a2 + b2) tanA = (a2 – b2 + c2) tanB = (b2 – c2 + a2) tanC [Proved] |
|