

InterviewSolution
Saved Bookmarks
1. |
In any ΔABC, prove that\(\frac{cosA}a\) + \(\frac{cosB}b\) + \(\frac{cosc}c\) = \(\frac{(a^2+b^2+c^2)}{2abc}\) |
Answer» Need to prove: \(\frac{cosA}a\) + \(\frac{cosB}b\) + \(\frac{cosc}c\) = \(\frac{(a^2+b^2+c^2)}{2abc}\) Left hand side = \(\frac{cosA}a\) + \(\frac{cosB}b\) + \(\frac{cosc}c\) = \(\frac{b^2+c^2-a^2}{2abc}\) + \(\frac{c^2+a^2-b^2}{2abc}\) + \(\frac{a^2+b^2-c^2}{2abc}\) = \(\frac{a^2+b^2+c^2}{2abc}\) = Right hand side. [proved] |
|