Saved Bookmarks
| 1. |
In fig. ∠ACB = 40°, find ∠OAB |
|
Answer» ∴ ∠ACB = 40° We know that angle subtended by arc of a circle at center is double the angle at remaining part. ∴ ∠AOB = 2∠ACB = 2 × 40° = 80° ⇒ ∠AOB = 80° ∵ OA = OB = radius of circle ∴ In ∆AOB ∠OAB + ∠OBA + ∠AOB = 180° ∵ Angles opposite to equal sides are equal. ∴ ∠OAB = ∠OBA ⇒ ∠OAB + ∠OAB + 80° = 180° ⇒ 2∠OAB = 180° – 80° ⇒ ∠OAB = \(\frac { { 100 }^{ \circ } }{ 2 } \) ⇒ ∠OAB = 50° |
|