

InterviewSolution
Saved Bookmarks
1. |
In Fig., D is the mid-point of side BC and AE ⊥ BC. If BC = a, AC = b, AB = c, ED = x, AD = p and AE = h, prove that:(i) \(b^2 = p^2+a+\frac{{a}^2}{4}\)(ii) \(c^2 = p^2 -{ax}+\frac{a^2}{4}\)(iii)\(v^2+c^2 =2p^2+\frac{{a}^2}{2}\) |
Answer» We have D is the midpoint of BC (i) In ΔAEC AC2 = AE2 + EC2 b2 = AE2 + (ED + DC)2 b2 = AD2 + DC2 + 2 x ED x DC (Given BC = 2CD) b2 = p2 + (a/2)2 + 2(a/2)x b2 = p2 + a2/4 + ax b2 = p2 + ax + a2/4 ………….. (i) (ii) In ΔAEB AB2 = AE2 + BE2 c2 = AD2 - ED2 + (BD - ED)2 c2 = p2 - ED2 + BD2+ ED2 - 2BD x ED c2 = P2 + (a/2)2 - 2(a/2)2x c2 = p2 - ax + a2/4 ……………….(ii) (iii) Adding equ. (i)and(ii) we get b2 + c2 = 2p2 + a2/2 |
|