1.

In Fig., D is the mid-point of side BC and AE ⊥ BC. If BC = a, AC = b, AB = c, ED = x, AD = p and AE = h, prove that:(i) \(b^2 = p^2+a+\frac{{a}^2}{4}\)(ii) \(c^2 = p^2 -{ax}+\frac{a^2}{4}\)(iii)\(v^2+c^2 =2p^2+\frac{{a}^2}{2}\) 

Answer»

We have 

D is the midpoint of BC 

(i) In ΔAEC 

AC2 = AE2 + EC

b= AE2 + (ED + DC)

b2 = AD2 + DC2 + 2 x ED x DC 

(Given BC = 2CD) 

b2 = p2 + (a/2)2 + 2(a/2)x 

b2 = p2 + a2/4 + ax 

b2 = p2 + ax + a2/4 ………….. (i) 

(ii) In ΔAEB 

AB2 = AE2 + BE2 

c2 = AD2 - ED2 + (BD - ED)2 

c2 = p2 - ED2 + BD2+ ED2 - 2BD x ED 

c2 = P2 + (a/2)2 - 2(a/2)2

c= p- ax + a2/4 ……………….(ii) 

(iii) Adding equ. (i)and(ii) we get 

b2 + c2 = 2p2 + a2/2



Discussion

No Comment Found

Related InterviewSolutions