1.

In fig, ΔACB ∼ ΔAPQ. If BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm, find CA and AQ.

Answer»

Given, 

ΔACB ∼ ΔAPQ 

BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm 

Required to find: CA and AQ

We know that, 

ΔACB ∼ ΔAPQ [given] 

\(\frac{BA}{AQ} = \frac{CA}{AP} = \frac{BC}{PQ}\) [Corresponding Parts of Similar Triangles] 

So, 

\(\frac{6.5}{AQ}\) = \(\frac{8}{4}\) 

AQ = \(\frac{(6.5 \times 4)}{8}\)

AQ = 3.25 cm 

Similarly, as 

\(\frac{CA}{AP}\) = \(\frac{BC}{PQ}\) 

\(\frac{CA}{2.8}\) = \(\frac{8}{4}\) 

CA = 2.8 x 2 

CA = 5.6 cm 

Hence, CA = 5.6 cm and AQ = 3.25 cm.



Discussion

No Comment Found

Related InterviewSolutions