

InterviewSolution
Saved Bookmarks
1. |
In fig, ΔACB ∼ ΔAPQ. If BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm, find CA and AQ. |
Answer» Given, ΔACB ∼ ΔAPQ BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm Required to find: CA and AQ We know that, ΔACB ∼ ΔAPQ [given] \(\frac{BA}{AQ} = \frac{CA}{AP} = \frac{BC}{PQ}\) [Corresponding Parts of Similar Triangles] So, \(\frac{6.5}{AQ}\) = \(\frac{8}{4}\) AQ = \(\frac{(6.5 \times 4)}{8}\) AQ = 3.25 cm Similarly, as \(\frac{CA}{AP}\) = \(\frac{BC}{PQ}\) \(\frac{CA}{2.8}\) = \(\frac{8}{4}\) CA = 2.8 x 2 CA = 5.6 cm Hence, CA = 5.6 cm and AQ = 3.25 cm. |
|