1.

In Fig.,PA, QB and RC are each perpendicular to AC. Prove that \(\frac{1}{x} +\frac{1}{z} = \frac{1}{y}\).

Answer»

We have, 

PA ⏊ AC, and RC ⏊ AC 

Let AB = a and BC = b 

In ΔCQB and ΔCPA

QCB = PCA(common)

QBC = PCA(Each 90º)

Then, ΔCQB ~ ΔCPA (By AA similarity)

So,\(\frac{QB}{PA}\) =\(\frac{CB}{CA}\)  (Corresponding parts of similar triangle area proportion)

Or,\(\frac{y}x\) = \(\frac{b}{{a}+{b}}\) -----------(i) 

In ΔAQB and ΔARC

QAB = RAC(common)

ABQ = AQC(Each 90º)

Then, ΔAQB ~ ΔARC (By AA similarity)

So,\(\frac{QB}{RC}\) = \(\frac{AB}{CA}\) (Corresponding parts of similar triangle area proportion)

Or,\(\frac{y}x\) =\(\frac{b}{{a}+{b}}\)  -----------(ii) 

Adding equation i & ii

\(\frac{y}{x}+\frac{y}{x} \) = \(\frac{b}{{a}+{b}}\) = \(\frac{a}{{a}+{b}}\)

or,\({y}(\frac{1}{x}+\frac{1}{z})\) = \(\frac{b+a}{a+b}\)

or,\({y}(\frac{1}{x}+\frac{1}{z})\) = 1

or \(\frac{1}{x}+\frac{1}{z} \) = \(\frac{1}y\)



Discussion

No Comment Found

Related InterviewSolutions