

InterviewSolution
Saved Bookmarks
1. |
In Fig., PQ = PR, RS = RQ and ST || QR. If the exterior angle RPU is 140°, then the measure of angle TSR is (a) 55° (b) 40° (c) 50° (d) 45° |
Answer» (b) 40o Consider the ΔPQR. From the exterior angle property = ∠RPU – ∠PRQ + ∠PQR ∠RPU = ∠PRQ + ∠PQR 140O = 2 ∠PQR … [given PQ = PR] ∠PQR = 140/2 ∠PQR = 70o Given, ST || QR and QS is transversal. From the property of corresponding angles, ∠PST = ∠PQR = 70o Now, consider the ΔQSR RS = RQ … [from the question] So, ∠SQR – ∠RSQ = 70O Then, PQ is a straight line. ∠PST + ∠TSR + ∠RSQ = 180o 70o + ∠TSR + 70o = 180o 140o + ∠TSR = 180o ∠TSR = 180o – 140o ∠TSR = 40o |
|