1.

In Fig., PQ = PR, RS = RQ and ST || QR. If the exterior angle RPU is 140°, then the measure of angle TSR is (a) 55° (b) 40° (c) 50° (d) 45°

Answer»

(b) 40o

Consider the ΔPQR.

From the exterior angle property = ∠RPU – ∠PRQ + ∠PQR

∠RPU = ∠PRQ + ∠PQR

140O = 2 ∠PQR … [given PQ = PR]

∠PQR = 140/2

∠PQR = 70o

Given, ST || QR and QS is transversal.

From the property of corresponding angles, ∠PST = ∠PQR = 70o

Now, consider the ΔQSR

RS = RQ … [from the question]

So, ∠SQR – ∠RSQ = 70O

Then, PQ is a straight line.

∠PST + ∠TSR + ∠RSQ = 180o

70o + ∠TSR + 70o = 180o

140o + ∠TSR = 180o

∠TSR = 180o – 140o

∠TSR = 40o



Discussion

No Comment Found

Related InterviewSolutions