

InterviewSolution
Saved Bookmarks
1. |
In figure, if DE`abs()`BC, then find the ratio of ar (`DeltaADE`) and ar(DECB). |
Answer» Given, DE`abs()`BC, DE= 6 cm and BC= 12 cm In `DeltaADE,` `angleABC=angle(ADE)` [corresponding angle] `angleACB=angleAED` [corresponding angle] and `angleA=angleA` [common sides] ` therefore DeltaABC~DeltaAED` [by AAA similarity criterion] Then, `(ar(DeltaADE))/(ar(DeltaABC))=((DE)^(2))/((BC)^(2))` `=((6)^(2))/((12)^(2))=(1/2)^(2)` `rArr (ar(DeltaADE))/(ar(DeltaABC))=(1/2)^(2)=1/4` Let ar(`DeltaADE`)=k,then ar(`DeltaABC`)=4k Now, ar(DECB)=ar(ABC)-ar(ADE)=4k-k=3k `therefore` Required ratio=ar(ADE) : ar(DECB)=K : 3k=1 : 3` |
|