

InterviewSolution
Saved Bookmarks
1. |
In figure O is any point inside a rectangle ABCD. Prove that OB2 + OD2 = OA2 + OC2. |
Answer» Through O, draw PQ||BC so that P lies on AB and Q lies on DC. Now, PQ||BC PQ ⊥ AB and PQ ⊥ DC (∵ ∠B = 90° and ∠C = 90°) So, ∠BPQ = 90° and ∠CQP = 90° Therefore BPQC and APQD are both rectangles. Now from ΔOPB, OB2 = BP2 + OP2 … (1) Similarly from ΔOQD, OD2 = OQ2 + DQ2 … (2) From ΔOQC, we have OC2 = OQ2 + CQ2 … (3) ΔOAP, we have OA2 = AP2 + OP2 … (4) Adding (1) and (2) OB2 + OD2 = BP2 + OP2 + OQ2 + DQ2 (As BP = CQ and DQ = AP) = CQ2 + OP2 + OQ2 + AP2 = CQ2 + OQ2 + OP2 + AP2 = OC2 + OA2 [From (3) and (4)] |
|