Saved Bookmarks
| 1. |
In Figure, ray `O S`stand on a line `P O Qdot`Ray `O R`and ray `O T`are angle bisectors of `/_P O S a n d /_S O Q`respectively. If `/_P O S=x ,`find `/_R O T` |
|
Answer» `/_POS+/_SOQ=180^0-(1)` `/_POS and /_SOQ` is linear pair of angles. `/_POR=/_ROS /_SOT+/_TOQ=/_SOQ` `/_SOT=/_TOQ` `x+/_SOQ=180^0` `/_SOQ=180^0-x-(2)` `2/_SOT=180^0-x` `/_SOT=(180^0-x)/2`-(3) `/_ROS=/_(POS)/2` `/_ROS=x/2` `/_ROT=/_SOT+/_ROS` `(180-x)/2+x/2` =`90^0`. |
|