1.

In figure, two sides AB and BC and the median AM of a ∆ABC are respectively equal to sides DE and EF and the median DN of ∆DEF. Prove that ∆ABC ≅ ∆DEF.  

Answer»

∴ AM and DN are medians of ∆ABC & ∆DEF respectively 

∴ BM = MC & EN = NF 

⇒ BM = 1/2 BC & EN = 1/2 EF 

But, BC = EF ∴BM = EN ...(i) 

In ∆ABM & ∆DEN we have 

 AB = DE [Given] 

 AM = DN [Given] 

 BM = EN [By (i)] 

∴ By SSS criterion of congruence we have 

 ∆ABM ≅ ∆DEN ⇒ ∠B = ∠E ...(ii) [By cpctc] 

 Now, In ∆ABC & ∆DEF 

 AB = DE [Given] 

 ∠B = ∠E [By (ii)] 

 BC = EF [Given] 

∴ By SAS criterion of congruence we get ∆ABC ≅ ∆DEF



Discussion

No Comment Found

Related InterviewSolutions