InterviewSolution
Saved Bookmarks
| 1. |
In given figure,l`abs()`m and liner segments AB, CD and EF are concurrent at point P. Prove that `(AE)/(BF)=(AC)/(BD)=(CE)/(FD)` |
|
Answer» Given l`abs()`m and line segments AB, CD and EF are concurrent at point P To prove `(AE)/(BF)=(AC)/(BD)=(CE)/(FD)` Proof In `DeltaAPC and DeltaBPD, angleAPC=angleBPD` [vertically opposite angle] `anglePAC=anglePBD` [alternate angle] `therefore DeltaAPC~DeltaBPD` [by AAA similarity criterion] Then, `(AP)/(PB)=(AC)/(BD)=(PC)/(PD)` In `DeltaAPE` and `DeltaBPF, angleAPE=angleBPF` [vertically opposite angles] `anglePAE=anglePBF` [alternate angles] `therefore DeltaAPE~DeltaBPF` [by AAA similarity criterion] Then, `(AP)/(PB)=(AE)/(BF)=(PE)/(PF)`....(ii) In `DeltaPEC and DeltaPFD, angleEPC=angleFPD` [vertically opposite angle] `anglePCE=anglePDF` [alternate angles] `therefore DeltaPEC~DeltaPFD` [by AAA similarity criterion] Then, `(PE)/(PF)=(PC)/(PD)=(EC)/(FD)`....(iii) From Eqs. (i) ,(ii) and (iii), `(AP)/(PB)=(AC)/(BD)=(AE)/(BF)=(PE)/(PF)=(EC)/(FD)` `therefore (AE)/(BF)=(AC)/(BD)=(CE)/(FD)` Hence proved |
|