Saved Bookmarks
| 1. |
In the adjoining figure, ABCD is a cyclic quadrilateral whose side AB is the diameter of the circle . If `angle ADC=140^(@)` , then find the value of `angleBAC`. |
|
Answer» Since, ABCD is a cyclic quadrilateral . `thereforeangle ADC+angle ABC=180^@` `rArr140^@+angle ABC=180^@` `rArrangle ABC=180^@-140^@` `rArrangle ABC =40^@` AB is the diameter of circle. `thereforeangleACB=90^@` (angle in a semi- circle) Now, in `Delta ABC` ` angle BAC=angle ABC+anlge ACB=180^@` `rArrangle BAC +40^@+90^@=180^@` `rArrangle BAC =180^@-130^@` `rArrangle BAC -50^@` |
|