1.

In the adjoining figure, ABCD is a cyclic quadrilateral whose side AB is the diameter of the circle . If `angle ADC=140^(@)` , then find the value of `angleBAC`.

Answer» Since, ABCD is a cyclic quadrilateral .
`thereforeangle ADC+angle ABC=180^@`
`rArr140^@+angle ABC=180^@`
`rArrangle ABC=180^@-140^@`
`rArrangle ABC =40^@`
AB is the diameter of circle.

`thereforeangleACB=90^@` (angle in a semi- circle)
Now, in `Delta ABC`
` angle BAC=angle ABC+anlge ACB=180^@`
`rArrangle BAC +40^@+90^@=180^@`
`rArrangle BAC =180^@-130^@`
`rArrangle BAC -50^@`


Discussion

No Comment Found

Related InterviewSolutions