1.

In the adjoining figure, if points P, Q, R, S are on the sides of parallelogram such that AP = BQ = CR = DS, then prove that □PQRS is a parallelogram.

Answer»

Given: □ABCD is a parallelogram.

 AP = BQ = CR = DS

To prove: □PQRS is a parallelogram.

Proof: 

□ABCD is a parallelogram. [Given] 

∴ ∠B = ∠D ….(i) [Opposite angles of a parallelogram] 

Also, AB = CD [Opposite sides of a parallelogram] 

∴ AP + BP = DR + CR [A-P-B, D-R-C] 

∴ AP + BP = DR + AP [AP = CR] 

∴ BP = DR ….(ii) 

In APBQ and ARDS,

 seg BP ≅ seg DR [From (ii)] 

∠PBQ ≅ ∠RDS [From (i)] 

seg BQ ≅ seg DS [Given]

∴ ∆PBQ ≅ ∆RDS [SAS test] 

∴ seg PQ ≅ seg RS …..(iii) [c.s.c.t] 

Similarly, we can prove that 

∆PAS ≅ ∆RCQ 

∴ seg PS ≅ seg RQ ….(iv) [c.s.c.t]

 From (iii) and (iv), 

□PQRS is a parallelogram. [A quadrilateral is a parallelogram, if pairs of its opposite angles are congruent]



Discussion

No Comment Found

Related InterviewSolutions