InterviewSolution
Saved Bookmarks
| 1. |
In the adjoining figure, O is the centre of the circle and B is a point of contact. Seg OE ⊥ seg AD, AB = 12, AC = 8, find i. AD ii. DC iii. DE |
|
Answer» i. Line AB is the tangent at point B and seg AD is the secant. [Given] ∴ AC × AD = AB2 [Tangent secant segments theorem] ∴ 8 × AD = 122 ∴ 8 × AD = 144 ∴ AD = 144/8 ∴ AD = 18 units ii. AD = AC + DC [A – C – D] ∴ 18 = 8 + DC ∴ DC = 18 – 8 ∴ DC = 10 units iii. seg OE ⊥ seg AD [Given] i.e. seg OE ⊥ seg CD [A – C – D] ∴ DE = (1/2) DC [Perpendicular drawn from the centre of the circle to the chord bisects the chord] = (1/2) × 10 ∴ DE = 5 units |
|