1.

In the adjoining figure, quarilateral PQRS is cyclic, side PQ ≅ side RQ, ∠PSR = 110°. Find i. measure of ∠PQR ii. m (arc PQR) iii. m (arc QR) iv. measure of ∠PR

Answer»

i. PQRS is a cyclic quadrilateral. [Given] 

∴ ∠PSR + ∠PQR = 180° [Opposite angles of a cyclic quadrilateral are supplementary]

∴ 110° + ∠PQR = 180° 

∴ ∠PQR = 180° – 110° 

∴ m ∠PQR = 70° 

ii. ∠PSR= 1/2 m (arcPQR) [Inscribed angle theorem] 

110°= 1/2 m (arcPQR) 

∴ m(arc PQR) = 220° 

iii. In ∆PQR, 

side PQ ≅ side RQ [Given] 

∴ ∠PRQ = ∠QPR [Isosceles triangle theorem] 

Let ∠PRQ = ∠QPR = x

Now, ∠PQR + ∠QPR + ∠PRQ = 180° [Sum of the measures of angles of a triangle is 180°] 

∴ ∠PQR + x + x= 180° 

∴ 70° + 2x = 180° 

∴ 2x = 180° – 70° 

∴ 2x = 110°

∴ x = 100°/2 = 55°

∴ ∠PRQ = ∠QPR = 55°….. (i) 

But, ∠QPR = 1/2 nm(arc QR) [Inscribed angle theorem] 

∴ 55° = 1/2 m(arc QR) 

∴ m(arc QR) = 110° 

iv. ∠PRQ = ∠QPR =55° [From (i)] 

∴ m ∠PRQ = 55° 



Discussion

No Comment Found

Related InterviewSolutions