1.

In the expansion of `(1 + ax)^(n)`, the first three terms are respectively 1, 12x and `64x^(2)`. What is n equal to ?A. 6B. 9C. 10D. 12

Answer» Correct Answer - B
The first three terms in expansion of `(1+ax)^(n)` are `.^(n)C_(0), .^(n)C_(1)ax, .^(n)C_(2)a^(2)x^(2)`
Given, `.^(n)C_(0)=1, .^(n)C_(1) ax = 12x, .^(n)C_(2)a^(2)x^(2)=64x^(2)`
`rArr "nax" = 12x,(n(n-1))/(2)a^(2)=64`
`rArr "na"=12 rArr a = (12)/(n)`
`therefore (n(n-1))/(2)a^(2)=64 rArr (n(n-1))/(2)xx(144)/(n^(2))=64`
`rArr(n-1)/(n)=(64xx2)/(144)=(8)/(9)`
`therefore n = 9`


Discussion

No Comment Found