1.

In the expansion of `(x^3-1/(x^2))^n ,n in N`, if the sum of the coefficients of `x^5a n dx^(10)`, then `n`isa. 25 b. 20 c. 15 d. none of theseA. 5005B. 7200C. -5005D. -7200

Answer» Correct Answer - C
`(x^(3)-(1)/(x^(2)))^(n)`
General term, `T_(r+1)=.^(n)C_(r)(x^(3))^(n-r).(-(1)/(x^(2)))^(r)`
`=.^(n)C_(r).x^((3n-3r)).(-1)^(r).x^(-2x)`
`=.^(n)C_(r).(-1)^(r).x^((3n-5r))" "...(i)`
For the coefficient `x^(5)`
Put 3n - 5r = 5
5r = 3n - 5
`therefore r = (3n)/(5)-1`
`therefore "Coefficient of" x^(5)=.^(n)C_(((3n)/(5)-1))(-1)^(((3n)/(5)-1))`
For the cefficient of `x^(10)`
Put 3n - 5r = 10
5r = 3n - 10
`therefore r = (3n)/(5)-2`
`therefore "Coefficient of" x^(10)=.^(n)C_(((3n)/(5)-2))(-1)^(((3n)/(5)-2))`
The sum of the coefficient of `x^(5) and x^(10)=0`
`rArr .^(n)C_(((3n)/(5)-1))(-1)^(((3n)/(5)-1))+.^(n)C_(((3n)/(5)-2))(-1)^(((3n)/(5)-2))=0`
`rArr (-1)^((3n)/(5))[.^(n)C_(((3n)/(5)-1)).(-1)^(-1)+.^(n)C_(((3n)/(5)-2)).(-1)^((-2))]=0`
`rArr -.^(n)C_(((3n)/(5)-1))+.^(n)C_(((3n)/(5)-2))=0" "...(ii)`
For the independent term,
put `3n - 5 r = 0 " "["from eq. (i)"]`
`rArr 5r = 3n = 3 xx 15`
`5r = 3 xx 3 xx 5`
r = 9
Putting the value of r in eq. (i), we get
`T_(9+1)=.^(15)C_(9).(-1)^(9).x^((3 xx 15 - 5 xx 9))`
`rArr T_(10)=-.^(15)C_(9).x^(0)=-.^(15)C_(9)`
`rArr T_(10)=-.^(15)C_(6)" "[because .^(n)C_(r)=.^(n)C_(n-r)]`
`=(-15!)/(6!9!)" "[because .^(n)C_(r)=(n!)/(r!(n-r)!)]`
`=-5005`


Discussion

No Comment Found