

InterviewSolution
Saved Bookmarks
1. |
In the figure above, AB || CD. EF and FG are the bisectors of `angleBEG and angleDGE`, respectively. `angleFEG=angleFGE+10^(@)`. Find `angleFGE`.A. `20^(@)`B. `25^(@)`C. `40^(@)`D. `35^(@)` |
Answer» Correct Answer - C `AB||CD` `angleBEG+angleEGD=180^(@)` EF and FG bisect ` angleBEG and angleDGE,` respectively. `:. 2 angleFEG+2 angleFGE=180^(@)` `angleFEG+angleFGE=90^(@)" "`(1) `angleFEG=angleFGE+10^(@)" "`(2) On solving Eq. (1) and (2), we get `angleFGE=40^(@)`. Hence, the correct option is ( c). |
|