1.

In the figure, CDE is a straight line and A, B, C and D are points on the circle. ∠BCD = 44°, find the value of x.(a) 44° (b) 68° (c) 90° (d) 56°

Answer»

(c) 90°

∠CDB =\(\frac{1}{2}\) (180º - 44º) = \(\frac{1}{2}\) x 136º = 68º    (∵ BCD is an isos. Δ)

∠BAD = 180° – 44° = 136° (opp.∠s of a cyclic quad. are supp.)

∴ ∠ADB = \(\frac{1}{2}\) (180º -136º) = \(\frac{1}{2}\) x 44º = 22º  (∵BAD is an isos. Δ)

∴ ∠ADC = ∠ADB + ∠BDC = 22° + 68° = 90°

\(\Rightarrow\) x = ∠ADE = 180°–∠ADC =180° – 90° = 90° (∵ EDC is a st. line)



Discussion

No Comment Found

Related InterviewSolutions