

InterviewSolution
Saved Bookmarks
1. |
In the figure, PQ = RS and ∠ORS = 48°. Find ∠OPQ and ∠ROS. |
Answer» ‘O’ is the centre of the circle. PQ = RS [given, equal chords] ∴∠POQ = ∠ROS [ ∵ equal chords make equal angles at the centre] ∴ In ΔROS ∠ORS + ∠OSR + ∠ROS = 180° [angle sum property] ∴ 48° + 48° + ∠ROS = 180° [ ∵ OR = OS(radii); ΔORS is isosceles] ∴ ∠ROS = 180° – 96° = 84° Also ∠POQ = ∠ROS = 84° ∴ ∠OPQ = ∠OQP [∵ OP = OQ; radii] = 1/2 [180°-84°] = 48° |
|