1.

In the following figure, ABD is a triangle right angled at A and AC ⊥BD. Show that (i) AB2= BC.BD (ii) AC2 = BC.DC (iii) AD2 = BD.CD

Answer»

Data: In ∆ABD, ∠A = 90°, 

AC ⊥ BD. 

To Proved: AB2 = BC.BD 

(ii) AC2 = BC.DC 

iii) AD2 = BD.CD 

(i) AB2 = BC.BD 

∆ACB ~ ∆BAD (. Theorem7)

∴ \(\frac{AB}{BD} = \frac{BC}{AB}\)

∴ AB= BC × BD. 

(ii) AC2 = BC.DC 

∆BCA ~ ∆ACD

∴ \(\frac{AB}{AD} = \frac{AC}{CD} = \frac{BC}{AC}\) 

∴ AC × AC = BC × CD 

∴ AC2 = BC × CD 

(iii) AD2 = BD.CD 

∆ACD ~ ∆BAD

∴ \(\frac{AD}{BD} = \frac{CD}{AD} = \frac{AC}{AB}\)

∴ AD × AD = BD × DC 

∴ AD2 = BD × DC



Discussion

No Comment Found

Related InterviewSolutions