

InterviewSolution
Saved Bookmarks
1. |
In the following figure, ABD is a triangle right angled at A and AC ⊥BD. Show that (i) AB2= BC.BD (ii) AC2 = BC.DC (iii) AD2 = BD.CD |
Answer» Data: In ∆ABD, ∠A = 90°, AC ⊥ BD. To Proved: AB2 = BC.BD (ii) AC2 = BC.DC iii) AD2 = BD.CD (i) AB2 = BC.BD ∆ACB ~ ∆BAD (. Theorem7) ∴ \(\frac{AB}{BD} = \frac{BC}{AB}\) ∴ AB2 = BC × BD. (ii) AC2 = BC.DC ∆BCA ~ ∆ACD ∴ \(\frac{AB}{AD} = \frac{AC}{CD} = \frac{BC}{AC}\) ∴ AC × AC = BC × CD ∴ AC2 = BC × CD (iii) AD2 = BD.CD ∆ACD ~ ∆BAD ∴ \(\frac{AD}{BD} = \frac{CD}{AD} = \frac{AC}{AB}\) ∴ AD × AD = BD × DC ∴ AD2 = BD × DC |
|