Saved Bookmarks
| 1. |
In the given circuit assuming inductor and source to be ideal, the phase differece between current `I_(1)` and `I_(2)` : A. `tan^(-1)((X_(C))/(R))-(pi)/(2)`B. `tan^(-1)((X_(C))/(R))`C. `tan^(-1)((X_(C))/(R))+(pi)/(2)`D. `(pi)/(2)` |
|
Answer» Correct Answer - C Let `V_(s) = V_(s) sin omegat` `I_(1) = I_(01) sin (omegat - pi//2)` `I_(2) = I_(02) sin (omegat + theta)` `tan theta = ((x_(c ))/(R ))` : So phase diffreence `= theta + (pi)/(2)` `tan^(-1) ((X_(c ))/(R )) + (pi)/(2)` |
|