

InterviewSolution
1. |
In the given figure, \(\frac{QT}{PR}\)=\(\frac{QR}{QS}\) and ∠1 = ∠2. Prove that △PQS ~ △TQR. |
Answer» Given: \(\frac{QT}{PR}\)= \(\frac{QR}{QS}\) ∠1 = ∠2 R.T.P : △PQS ~ △TQR Proof: In △PQR; ∠1 = ∠2 Thus, PQ = PR [∵ sides opp. to equal angles are equal] \(\frac{QT}{PR}\)=\(\frac{QR}{QS}\) ⇒ \(\frac{QT}{PQ}\)= \(\frac{QR}{QS}\) i.e., the line PS divides the two sides QT and QR of △TQR in the same ratio. Hence, PS // TR. [∵ If a line join of any two points on any two sides of triangle divides the two sides in the same ratio, then the line is parallel to the third side] Hence, PS // TR (converse of B.P.T) Now in △PQS and △TQR ∠QPS = ∠QTR [∵ ∠P, ∠T are corresponding angles for PS // TR] ∠QSP = ∠QRT [∵ ∠S, ∠R are corresponding angles for PS // TR] ∠Q = ∠Q (common) ∴ △PQS ~ △TQR (by AAA similarity) |
|