1.

In the given figure if LM || AB, AL = x – 3, AC = 2x,BM = x – 2 and BC = 2x + 3. Then the value of x is …………….(A) 7 (B) 8 (C) 9 (D) Cannot be determined

Answer»

Correct option is (C) 9

\(\because\) LM || AB

\(\therefore\) \(\angle CLM=\angle CAB\)     (Corresponding angles as LM || AB)

\(\angle CML=\angle CBA\)     (Corresponding angles as LM || AB)

\(\therefore\) \(\triangle CLM\sim\triangle CAB\)    (By AA similarity rule)

\(\therefore\) \(\frac{LC}{AC}=\frac{MC}{BC}\)                (By properties of similar triangles)

\(\Rightarrow\) \(\frac{AC-AL}{AC}=\frac{BC-BM}{BC}\)

\(\Rightarrow\) \(\frac{2x-(x-3)}{2x}=\frac{2x+3-(x-2)}{2x+3}\)               (Given)

\(\Rightarrow\) \(\frac{x+3}{2x}=\frac{x+5}{2x+3}\)

\(\Rightarrow(x+3)(2x+3)=2x(x+5)\)

\(\Rightarrow2x^2+9x+9=2x^2+10x\)

\(\Rightarrow10x-9x=9\)

\(\Rightarrow x=9\)

Correct option is: (C) 9



Discussion

No Comment Found

Related InterviewSolutions