

InterviewSolution
Saved Bookmarks
1. |
In the given figure, PA, QB and RC each is perpendicular to AC such that `PA=x, RC=y, QB=z, AB=a, and BC=b` Prove that `(1)/(x)+(1)/(y)=(1)/(z)` |
Answer» `Pa bot AC and QB bot AC rArr QB||PA`. Thus, in `Delta PAC, QB||PA`, So, `Delta QBC~ Delta PAC`. `:. (QB)/(PA)=(BC)/(AC) rArr (z)/(x) =(b)/(a+b)....(i)` [ bu the propery of similar `Delta` ] In `Delta RAC, QB|| RC`, So, `Delta QBA~ Delta RAC`. `:. (QB)/(RC)=(AB)/(AC) rArr (z)/(y)=(a)/(a+b)...(ii)` [ by the propert of similar `Delta`] From (i) and (ii), we get `(z)/(x)+(z)/(y)=((b)/(a+b)+(a)/(a+b))=1` `rArr (z)/(x)+(z)/(y)=1 rArr (1)/(x)+(1)/(x)+(1)/(y)=(1)/(z)` Hence, `(1)/(x)+(1)/(y)=(1)/(z)` |
|