1.

In the network of Fig.  determine the current flowing through the branch of 4 Ω resistance using nodal analysis.

Answer»

We will find voltages VA and VB by using Nodal analysis and then find the current through 4Ω resistor by dividing their difference by 4.

V2(1/5 + 1/4 + 1/j2) - VB/4 - (50∠30º)/5 = 0

∴ VA(9 −j10) − 5VB = 200 ∠30º ...(i) 

Similarly, from node B, we have

VB(1/4 + 1/2 + 1/-j2) - VA/4 - (50 ∠ 90º)/2 = 0

∴ VB (3 + j2) −VA = 100 ∠90º = j 100 ...(ii)

VA can be eliminated by multiplying. Eq. (ii) by (9−j10) and adding the result. 

∴ VB(42 −j12) = 1173 + j1000 

or VB = (1541.4 ∠ 40.40º)/(43.68 ∠-15.9º) = 35.29∠56.3º = 19.58 + j29.36

Substituting this value of VB in Eq. (ii), we get 

VA = VB(3 + j2) −j100 = (19.58 + j29.36) (3 + j2) −j100 = j27.26 

∴ VA −VB = j 27.26 − 19.58 −j29.36 = − 19.58 −j2.1 = 19.69∠186.12º 

∴ I2 = (VA −VB)/4 = 19.69∠186.12º/4 

= 4.92∠186.12º 



Discussion

No Comment Found

Related InterviewSolutions