1.

In the picture, the square on the hypotenuse of the top most right triangle is drawn. Calculate the area and the length of a side of the square.

Answer»

Hypotenuse of first right triangle

\(\sqrt{1^2+1^2}=\sqrt{1+1}=\sqrt{2}\)

Hypotenuse of second right triangle

\(\sqrt{\sqrt{2^2}+1^2}=\sqrt{2+1}=\sqrt{3}\)

Hypotenuse of third right triangle

\(\sqrt{\sqrt{3^2}+1^2}=\sqrt{3+1}=\sqrt{4}=2\)

Hypotenuse of fourth right triangle

\(\sqrt{2^2+1^2}=\sqrt{4+1}=\sqrt{5}\)

i. e. the length of one side of square is \(\sqrt{5}\)

Area \(\sqrt{5}\times\sqrt{5}\) = 5 sq. m



Discussion

No Comment Found

Related InterviewSolutions