1.

In triangle abc\'E is the mid point of median AD show that area(BED)=1/4 area(ABC)

Answer» AD is median so,ar ({tex}\\triangle{/tex}ABD) =\xa0{tex}\\frac{1}{2}{/tex}ar({tex}\\triangle{/tex}ABC) ...(i)BE is median so,ar ({tex}\\triangle{/tex}BED) =\xa0{tex}\\frac{1}{2}{/tex}ar (ABD) ... (ii)From (i) & (ii)ar ({tex}\\triangle{/tex}BED) =\xa0{tex}\\frac{1}{4}{/tex}ar ({tex}\\triangle{/tex}ABC)Hence, Proved


Discussion

No Comment Found