Saved Bookmarks
| 1. |
InFigure altitudes AD and CE of DABCintersect each other at the point P. Show that:(i) `DeltaA E P DeltaC D P`(ii) `DeltaA B D DeltaC B E`(iii) `DeltaA E P DeltaA D B`(iv) `DeltaP D C DeltaB E C` |
|
Answer» In `Delta AEP and Delta CDP`, we have `angle AEP= angle CDP` [ eacjh equal to `90^(@)`] `angle APE= angle CPD` [ verticapply opposite `angle`] `:. Delta AEP ~ Delta CDP` [ by AA- similarity] (ii) In `Delta ABD and Delta CBE`, we have `angle ADB= angle CEB=90^(@)` `angle B= angle B` [ common] `:. Delta ABD~ Delta CBE` [ by AA- similarity] (iii) In `Delta AEP and Delta ADB`, we have `angle AEP=angleADB=90^(@)` `angle EAP= angle DAB` ( common) Hence, `Delta AEP~ Delta ADB` [ by AA- similarity] (iv) In `Delta PDC and Delta BEC`, we have `angle PDC= angle BEC= 90^(@)` `angle PCD= angle BCE` (common) `:.Delta PDC ~ Delta BEC` [ by AA- similarity] |
|