InterviewSolution
Saved Bookmarks
| 1. |
`int_(0)^(2)(6x+3)/(x^(2)+4)dx` |
|
Answer» माना `I=int_(0)^(2)(6x+3)/(x^(2)+4)dx` `=int_(0)^(2)(6x)/(x^(2)+4)dx+int_(0)^(2)(3)/(x^(2)+4)dx` `{:(माना ,x^(2)+4=t,rArr.,2xdx=dt),(,x=0,rArr.,t=0+4=4),(,x=2,rArr.,t=2^(2)+4=8):}` `therefore" "i=int_(4)^(8)(3)/(t)dt+int_(0)^(2)(3)/(x^(2)+4)dx` `=3int_(4)^(8)(1)/(t)dt+3int_(0)^(2)(1)/(x^(2)+2^(2))dx` `=3[logt]_(4)^(8)+(3)/(2)[tan^(-1).(x)/(2)]_(0)^(2)` `=3[log(8)-log(4)+(3)/(2)(tan^(-1).(2)/(2))` `=3log((8)/(4))+(3)/(2)xx(pi)/(4)` `= 3log2+(3pi)/(8)` |
|