

InterviewSolution
Saved Bookmarks
1. |
`int(1)/((1+sqrtx)sqrt(x-x^(2)))dx` is equal toA. `2(sqrt((x)/sqrt(1-x))-(1)/(sqrt(1-x)))+c`B. `2(sqrt((x)/sqrt(1-x))-(1)/(1-x))+c`C. `2(sqrt((x)/(1-x))-(1)/(sqrt(1-x)))+c`D. `2(sqrt((x)/(1-x))-(1)/(1-x))+c` |
Answer» Correct Answer - C `Let int(1)/((1+sqrtx)sqrt(x-1))dx` Putting `x=sin^(2)t and dx=2 sin t cos t dt,` we get `I=int(2sint cos tdt)/((1+sint)sqrt(sin^(2)t-sin^(4)t))` `rArr" "I=2int(1)/(1+sin t)dt=2int(1-sint)/(cos^(2)t)dt` `=2int(sec^(2)t-sect tan t)dt` `=2(tan t-sec t)+c` `rArr" "2(sqrt((x)/(1-x))-(1)/(sqrt(1-x)))+c` |
|