1.

`int[(1)/(logx)-(1)/((logx)^(2))]dx` का मान ज्ञात कीजिए ।

Answer» `int[(1)/(logx)-(1)/((logx)^(2))]dx=int1.(1)/(logx)dx-int(1)/((logx)^(2))dx`
`=(1)/(logx).int1dx - int{(d)/(dx).(1)/(logx).int1dx}dx-int(1)/((logx)^(2))dx`
`=(x)/(logx)-int(-1)/(x(logx)^(2)).xdx-int(1)/((logx)^(2))dx+c`
`=(x)/(logx)+int(1)/((logx)^(2))dx- int(1)/((logx)^(2))dx+c = (x)/(logx)+c`


Discussion

No Comment Found