1.

`int 1/(sinx+sin2x)dx`.

Answer» `I = int 1/(sinx+sin2x)dx`
`= int 1/(sinx+2sinxcosx)dx`
`= int 1/(sinx(1+2cosx)dx`
`= int sinx/(sin^2x(1+2cosx)dx`
`= int sinx/((1-cos^2x)(1+2cosx)dx`
Let `cosx = t , then -sinxdx= dt`
`:. I = int -dt/((1-t^2)(1+2t) )`
`= int -dt/((1-t)(1+t)(1+2t) )`
Now, `1/((1-t)(1+t)(1+2t)) = A/(1-t)+B/(1+t)+C/(1+2t)`
`=> 1/((1-t)(1+t)(1+2t)) = (A(1+t)(1+2t)+B(1-t)(1+2t)+C(1-t)(1+t))/((1-t)(1+t)(1+2t))`
`=> 1/((1-t)(1+t)(1+2t)) = (A+3At+2At^2+B+2Bt-2Bt^2+C-Ct^2)/((1-t)(1+t)(1+2t))`
Now, comparing coefficients on both sides,
`0 = 2A-2B - C->(1)`
`0 = 3A+3B->(2)`
`1 = A+B+C->(3)`
Solving (1),(2), and (3), we get,
`A = 1/6, B = -1/2, C = 4/3`
So, our integral becomes,
`I =- int 1/(6(1-t))-1/(2(1+t))+4/(3(1+2t)) dt`
`I =- int 1/(6(1-t)) + int 1/(2(1+t)) - int 4/(3(1+2t)) dt`
`I = -1/6 ln(1-t)(-1) +1/2 ln(1+t) - 4/3ln(1+2t)(1/2) +c`
`I = 1/6 ln(1-cosx) +1/2 ln(1+cosx) - 2/3ln(1+2cosx) +c`


Discussion

No Comment Found

Related InterviewSolutions