1.

`int 1/((x-1)^3(x+2)^5)^(1/4)dx` is equal toA. `(4)/(3)((x-1)/(x+2))^(1//4)+C`B. `(4)/(3)((x+2)/(x-1))^(1//4)+C`C. `(1)/(3)((x-1)/(x+2))^(1//4)+C`D. `(1)/(3)((x+2)/(x-1))^(1//4)+C`

Answer» Correct Answer - C
`int(1)/([(x-1)^(3)(x+2)^(5)]^(1//4))dx`
`=int(1)/(((x-1)/(x+2))^(3//4)(x+2)^(2))dx`
`=(1)/(3)int(1)/(t^(3//4))dt("put "(x-1)/(x+2)=t rArr (3)/((x+2)^(2))dx=dt)`
`=(1)/(3)((t^(1//4))/((1)/(4)))+C=(4)/(3)t^(1//4)+C=(4)/(3)((x-1)/(x+2))^(1//4)+C`
`=(1)/(3)((t^(1//4))/((1)/(4)))+C=(4)/(3)t^(1//4)+C=(4)/(3)((x-1)/(x+2))^(1//4)+C`


Discussion

No Comment Found