1.

`int(1)/(x^(2)-9)dx` is equal toA. `log|(x-3)/(x+3)|+C`B. `(1)/(6)log|(x-3)/(x+3)|+C`C. `(1)/(6)log|(x+3)/(x-3)|+C`D. `log|(x+3)/(x-3)|+C`

Answer» Correct Answer - B
`int(1)/(x^(2)-9)dx=int(1)/(x^(2)-3^(2))dx=int(1)/((x+3)(x-3))dx`
Let`" "(1)/((x+3)(x-3))=(A)/((x+3))+(B)/((x-3))`
`" "1=A(x-3)+B(x+3)`
`rArr" "1=x(A+B)+(-3A+3B)`
On equation the coefficients of x and constant term on both sides, we get
`A+B=0 and -3A+3B=1`
On solving, we get `A=-(1)/(6) and B=(1)/(6)`
`therefore int(1)/((x+3)(x-3))dx=int((-1))/(6(x+3))dx+int(1)/(6(x-3))dx`
`=-(1)/(6)log|x+3|+(1)/(6)log|x-3|+C`
`=(1)/(5)log|(x-3)/(x+3)|+C`


Discussion

No Comment Found