1.

`int(1)/(x^(4)+1)dx` का मान ज्ञात कीजिए ।

Answer» माना `I=int(1)/(x^(4)+1)dx=(1)/(2)int(2)/(x^(4)+1)dx`
`=(1)/(2)int((x^(2)+1)-(x^(2)-1))/(x^(4)+1)dx`
`=(1)/(2)int(x^(2)+1)/(x^(4)+1)dx-(1)/(2)int(x^(2)-1)/(x^(4)+1)dx`
`=(1)/(2)int(1+(1)/(x^(2)))/(x^(2)+(1)/(x^(2)))dx-(1)/(2)int(1-(1)/(x^(2)))/(x^(2)+(1)/(x^(2)))dx`
`rArr" "I=(1)/(2)int(1+(1)/(x^(2)))/((x-(1)/(x))^(2)+(sqrt2)^(2))dx-(1)/(2)int(1-(1)/(x^(2)))/((x+(1)/(x))^(2)-(sqrt2)^(2))dx`
माना प्रथम समाकल के लिये
`x-(1)/(x)=t rArr (1+(1)/(x^(2)))dx=dt`
और दूसरे समाकल के लिये
`x+(1)/(x)=u rArr (1-(1)/(x^(2)))dx=du`
`therefore I=(1)/(2)int(dt)/(t^(2)+(sqrt2)^(2))-(1)/(2)int(du)/(u^(2)-(sqrt2)^(2))`
`=(1)/(2sqrt2)tan^(-1).(t)/(sqrt2)-(1)/(2).(1)/(2sqrt2)log|(u-sqrt2)/(u+sqrt2)|+c`
`=(1)/(2sqrt2)tan^(-1)((x-(1)/(x))/(sqrt2))-(1)/(4sqrt2)log|(x+(1)/(x)-sqrt2)/(x+(1)/(x)+sqrt2)|+c`
`=(1)/(2sqrt2)tan^(-1)((x^(2)-1)/(xsqrt2))-(1)/(4sqrt2)log|(x^(2)-xsqrt2+1)/(x^(2)+xsqrt2+1)|+c`


Discussion

No Comment Found