1.

`int(1)/(x)(log_(ex)e)dx` is equal toA. `log_(e)(1-log_(e)x)+C`B. `log_(e)(log_(e)ex-1)+C`C. `log_(e)(log_(e)x-1)+C`D. `log_(e)(log_(e)x+1)+C`

Answer» Correct Answer - D
Let `l=int(1)/(x)(log_(ex)e)dx=int(1)/(x(1+log_(e)x))dx`
Put `log_(e)x=t" "rArr" "(1)/(x)dx=dt`
`therefore" "l=int(dt)/((1+t))=log_(e)(1+t)+C`
`=log_(e)(1+log_(e)x)+C`


Discussion

No Comment Found