InterviewSolution
Saved Bookmarks
| 1. |
`int_(2)^(4)(x^(2)+x)/(sqrt(x+1))dx` का मान ज्ञात कीजिए। |
|
Answer» `int_(2)^(4)(x^(2)+x)/(sqrt(2x+1))dx=[(x^(2)+x)int(1)/(sqrt(2x+1))dx]_(2)^(4)-int_(2)^(4)(d)/(dx)(x^(2)+x)int(1)/(sqrt(2x+1))dx` `=[(x^(2)+x)sqrt(2x+1)]_(2)^(4)- int_(2)^(4)(2x+1)sqrt(2x+1)dx` `=(60-6sqrt5)-int_(2)^(4)(2x+1)^(3//2)dx` `=(60-6sqrt5)-(1)/(5)[(2x+1)^(5//2)]_(2)^(4)` `=(60-6sqrt5)-(1)/(5)[243-(5)^(5//2)]` `=(60-6sqrt5)-(1)/(5)[243-25sqrt5]` `=(57-5sqrt5)/(5)` |
|