1.

`int(3x+1)/(2x^(2)-2x+3)dx` का मान ज्ञात कीजिए ।

Answer» माना `3x+1=A.(d)/(dx)(2x^(2)-2x+3)+B`
`rArr" "3x+1=A(4x-2)+B`
x के गुणांकों की तथा अचर पदों की तुलना करने पर
`{:(,3=4A," और ",1=-2A+B),(rArr.,A=(3)/(4)," और ",B=(5)/(2)):}`
`therefore int(3x+1)/(2x^(2)-2x+3)dx=int((3)/(4)(4x-2)+(5)/(2))/(2x^(2)-2x+3)dx`
`" "=(3)/(4)int(4x-2)/(2x^(2)-2x+3)dx+(5)/(2)int(1)/(2x^(2)-2x+3)dx`
`=(3)/(4)int(1)/(t)dt+(5)/(4)int(1)/(x^(2)-x+(3)/(2))dx`
माना `" "2x^(2)-2x+3=t`
`" "(4x-2)dx=dt`
`=(3)/(4)log|t|+(5)/(4)int(1)/((x^(2)-x+(1)/(4))+((3)/(2)-(1)/(4)))dx`
`=(3)/(4)log|2x^(2)-2x+3|+(5)/(4) int(1)/((x-(1)/(2))^(2)+((sqrt5)/(2))^(2))dx`
`=(3)/(4)log|2x^(2)-2x+3|+(5)/(4).(1)/(sqrt5//2)tan^(-1).(x-(1)/(2))/((sqrt5)/(2))+c`
`=(3)/(4)log|2x^(2)-2x+3|+(sqrt5)/(2)tan^(-1)((2x-1)/(sqrt5))+c`


Discussion

No Comment Found