1.

`int(3x^(2)+2x)/(x^(6)+2x^(5)+x^(4)+2x^(3)+2x^(2)+5)dx=`A. `(1)/(4)tan^(-1)((x^(3)+x^(2)+1)/(2))+c`B. `(1)/(2)tan^(-1)((x^(3)+x^(2)+1)/(2))+c`C. `sin^(-1)((x^(3)+x^(2)+1)/(2))+c`D. `(1)/(2)tan^(-1)((x^(3)+x^(2))/(2))+c`

Answer» Correct Answer - B
`I=int(3x^(2)+2x)/((x^(3)+x^(2)+1)^(2))dx`
Put `x^(3)+x^(2)+1=t`
`therefore" "I=int(1)/(t^(2)+4)dt`
`=(1)/(2)tan^(-1)((t)/(2))+c`
`=(1)/(2)tan^(-1)((x^(3)+x^(2)+1)/(2))+c`


Discussion

No Comment Found

Related InterviewSolutions