1.

`int((4e^x-25)/(2e^x-5))dx=A x+B log/(2e^x)-5/(+c)` thenA. A=5 and B=3B. A=5 and B=-3C. A=-5 and B=3D. A=-5 and B=-3

Answer» Correct Answer - B
Let `t=int ((4e^(x)-25)/(2e^(x)-5))dx`
`=int (4e^(x))/(2e^(x)-5))dx-int (25)/(2e^(x)-5))dx`
`=4int (e^(x))/(2e^(x)-5))dx=25 int (e^(-x))/(2-5e^(-x))=dx`
Put `2e^(x)-5=u and 2-5e^(-x)=v`
`Rightarrow 2e^(-x)dx=dv`
`and 5e^(-x)dx=dv`
`Rightarrow e^(x)dx=(du)/(2) and e^(-x)dx=(dv)/(5)`
`therefore I=4 int (du)/(2u)-25 int (du)/(5v)`
`=2log u-5log v+c`
`=2 log (2e^(x)-5)-5log(2-5e^(-x))+c`
`=2log(2e^(x)-5)-5log((2e^(x)-5)/(e^(x)))`
`=2log (2e^(x)-5)-5log (2-5e^(-x)+c`
`=-3log (2e^(x)-5)+5x+c`
`Rightarrow I=5x-3log (2e^(x)-5)+c`
But it is given I=Ax+Blog `(2e^(x)-5)+c`
`therefore A=5 and B=-3`


Discussion

No Comment Found

Related InterviewSolutions