

InterviewSolution
Saved Bookmarks
1. |
`int("cosec x")/(cos^(2)(1+log tan.(x)/(2)))dx` is equal toA. `sin^(2)[1+log tan.(x)/(2)]+C`B. `tan[1+log tan.(x)/(2)]+C`C. `sec^(2)[1+log tan.(x)/(2)]+C`D. `-tan[1+log tan.(x)/(2)]+C` |
Answer» Correct Answer - B Let `l=int("cosec x")/(cos^(2)(1+log tan.(x)/(2)))dx` Put `1+log tan.(x)/(2)=t` `rArr (1)/(tan.(x)/(2)).sec^(2).(x)/(2).(1)/(2)dx=dt rArr" cosec x dx = dt "` ltBrgt `therefore" "l=int(dt)/(cos^(2)t)=int sec^(2)t dx=tant+C` `=tan(1+log tan.(x)/(2))+C` |
|