1.

`int(cosx-1)/(sinx+1).e^(x)dx` is equal toA. `(e^(x)cosx)/(1+sinx)+C`B. `C-(e^(x)sinx)/(1+sinx)`C. `C-(e^(x))/(1+sinx)`D. `C-(e^(x)cosx)/(1+sinx)`

Answer» Correct Answer - A
Let `l=int(cosx)/(1+sinx).e^(x)dx-int(1)/(sinx+1).e^(x)dx`
integration by parts in first integral, we get
`((cosx)e^(x))/(1+sinx)-int[(-(1+sinx)sinx-cos^(2)x)/((1+sinx)^(2))].e^(x)dx-int(e^(x))/(sinx+1)dx`
`=(e^(x)cosx)/(1+sinx)+int(1)/(1+sinx).e^(x)dx-int(e^(x)dx)/(1+sinx)`
`=(e^(x)cosx)/(1+sinx)+C`


Discussion

No Comment Found