InterviewSolution
Saved Bookmarks
| 1. |
`int(dx)/(cos(2x)cos(4x))=`A. `(1)/(2sqrt2)log|(1+sqrt2sin2x)/(1-sqrt2sin2x)|-(1)/(2)(log|sec2x-tan2x|)+C`B. `(1)/(2sqrt2)log|(1-sqrt2sin2x)/(1+sqrt2sin2x)|-(1)/(2)(log|sec2x-tan2x|)+C`C. `(1)/(sqrt2)log|(1+sqrt2sin2x)/(1-sqrt2sin2x)|-(1)/(2)(log|sec2x-tan2x|)+C`D. none of these |
|
Answer» Correct Answer - B `int(sin(4x-2x)dx)/(sin(2x)cos(2x)cos(4x))` `=int(sin(4x)dx)/(sin(2x)cos(4x))-int sec2xdx` `=2int(cos2xdx)/(cos4x)-(1)/(2)(log|sec 2x-tan 2x|)` `=2int(cos2xdx)/(1-2sin^(2)2x)-(1)/(2)(log|sec2x-tan2x|)` `=int(dt)/(1-2t^(2))-(1)/(2)(log|sec 2x-tan2x|)` |
|