1.

`int(dx)/(cos x-sinx)` is equal toA. `(1)/(sqrt2)log|tan((x)/(2)-(pi)/(8))|+C`B. `(1)/(sqrt2)log|cot((x)/(2))|+C`C. `(1)/(sqrt2)log|tan((x)/(2)-(3pi)/(8))|+C`D. `(1)/(sqrt2)log|tan((x)/(2)+(3pi)/(8))|+C`

Answer» Correct Answer - D
`l=int(dx)/(cosx-sinx)`
`=(1)/(sqrt2)int(dx)/(((1)/(sqrt2)cosx-(1)/(sqrt2)sinx))`
`=(1)/(sqrt2)int(dx)/(cos(x+(pi)/(4)))`
`=(1)/(sqrt2)intsec(x+(pi)/(4))dx`
`=(1)/(sqrt2)log|tan((pi)/(4)+(x)/(2)+(pi)/(8))|+C`
`=(1)/(sqrt2)log|tan((x)/(2)+(3pi)/(8))|+C`


Discussion

No Comment Found