1.

`int(dx)/(sinx-cosx+sqrt2)` is equal toA. `-(1)/(sqrt2)tan((x)/(2)+(pi)/(8))+C`B. `(1)/(sqrt2)tan((x)/(2)+(pi)/(8))+C`C. `(1)/(sqrt2)cot((x)/(2)+(pi)/(8))+C`D. `-(1)/(sqrt2)cot((x)/(2)+(pi)/(8))+C`

Answer» Correct Answer - D
`int(dx)/(sinx-cosx+sqrt2)`
`=int(dx)/(sqrt2((1)/(sqrt2)sinx-(1)/(sqrt2)cosx)+sqrt2)`
`=(1)/(sqrt2)int(dx)/(1-cos (x+(pi)/(4)))=(1)/(sqrt2)int(dx)/(2sin^(2)((x)/(2)+(pi)/(8)))`
`=(1)/(2sqrt2)int(dx)/(sin^(2)((x)/(2)+(pi)/(8)))=(1)/(2sqrt2)int"cosec"^(2)((x)/(2)+(pi)/(8))dx`
`=(1)/(2sqrt2)[(-cot ((x)/(2)+(pi)/(8)))/((1)/(2))]+C=-(1)/(sqrt2)cot((x)/(2)+(pi)/(8))+C`


Discussion

No Comment Found