InterviewSolution
Saved Bookmarks
| 1. |
`int(dx)/(sinx-cosx+sqrt2)` is equal toA. `-(1)/(sqrt2)tan((x)/(2)+(pi)/(8))+C`B. `(1)/(sqrt2)tan((x)/(2)+(pi)/(8))+C`C. `(1)/(sqrt2)cot((x)/(2)+(pi)/(8))+C`D. `-(1)/(sqrt2)cot((x)/(2)+(pi)/(8))+C` |
|
Answer» Correct Answer - D `int(dx)/(sinx-cosx+sqrt2)` `=int(dx)/(sqrt2((1)/(sqrt2)sinx-(1)/(sqrt2)cosx)+sqrt2)` `=(1)/(sqrt2)int(dx)/(1-cos (x+(pi)/(4)))=(1)/(sqrt2)int(dx)/(2sin^(2)((x)/(2)+(pi)/(8)))` `=(1)/(2sqrt2)int(dx)/(sin^(2)((x)/(2)+(pi)/(8)))=(1)/(2sqrt2)int"cosec"^(2)((x)/(2)+(pi)/(8))dx` `=(1)/(2sqrt2)[(-cot ((x)/(2)+(pi)/(8)))/((1)/(2))]+C=-(1)/(sqrt2)cot((x)/(2)+(pi)/(8))+C` |
|