1.

`int(dx)/(x(logx)^(m))` is equal to thenA. `((logx)^(m))/(m)+C`B. `((logx)^(m-1))/(m-1)+C`C. `((logx)^(1-m))/(1-m)+C`D. `((logx)^(1-m))/(m)+C`

Answer» Correct Answer - C
`int(1)/(x(logx)^(m))dx`
Let `log x-t rArr (1)/(x)=(dt)/(dx) rArr dx=xdx`
`therefore" "int(1)/(x(logx)^(m))dx=int(1)/(x(t)^(m))xdt int t^(-m)dt`
`=(t^(-m+1))/(-m+1)+C=((logx)^(1-m))/(1-m)+C`


Discussion

No Comment Found