InterviewSolution
Saved Bookmarks
| 1. |
`int (dx)/(x(x^(2)+1))` बराबर है:A. `log|x|-(1)/(2)log(x^(2)+1)+C`B. `log|x|+(1)/(2)log(x^(2)+1)+C`C. `-log|x|+(1)/(2)log(x^()+1)+C`D. `(1)/(2)log|x|+log(x(2)+1)+C` |
|
Answer» Correct Answer - A माना `(1)/(x(x^(2)+1))=(A)/(x)+(Bx+C)/(x^(2)+1)` `1=A(x^(2)+1)+(Bx+C)x` x = 0 तो `1=A(0+1)+0" "rArr" "A=1` `x^(2)` के गुणांक समान रखने पर, `0=A+B" "rArr" "B=A=-1` `x` के गुणांक समान रखने पर , 0 = C `therefore " "(1)/(x(x^(2)+1))=(1)/(x)+(-x)/(x^(2)+1)` `therefore" "int(1)/(x(x^(2)+1))dx=int((1)/(x)-(x)/(x^(2)+1)dx)` `=log|x|-(1)/(2)log(x^(2)+1)+C` |
|