

InterviewSolution
Saved Bookmarks
1. |
`int(dx)/(xsqrt(x^(6)-16))=`A. `(1)/(3)sec^(-1)((x^(3))/(4))+C`B. `cos^(-1)((x^(3))/(4))+C`C. `(1)/(12)sec^(-1)((x^(3))/(4))+C`D. `sec^(-1)((x^(3))/(4))+C` |
Answer» Correct Answer - C Let `l=int(dx)/(xsqrt(x^(6)-16))=(1)/(3)int(3x^(2))/(x^(3)sqrt((x^(3))^(2)-4^(2)))dx` Put `x^(3)=t rArr 3x^(2)dx=dt` `therefore" "l=(1)/(3)int(dt)/(sqrt(t^(2)-4^(2)))=(1)/(3xx4)sec^(-1)((t)/(4))+C` `=(1)/(12)sec^(-1)((x^(3))/(4))+C` |
|